Shiyu

1. 两数之和

https://leetcode-cn.com/problems/two-sum

题目

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。

示例 1:

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

示例 2:

输入:nums = [3,2,4], target = 6
输出:[1,2]

示例 3

输入:nums = [3,3], target = 6
输出:[0,1]

提示:

2 <= nums.length <= 103
-109 <= nums[i] <= 109
-109 <= target <= 109
只会存在一个有效答案

暴力解答

我自己的解答:非常暴力检索,第一个: i 从0到n,第二个: j 从i+1 到n(或者倒序来)。这样复杂度是O(n^2)

1
2
3
4
5
6
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
for i in range(len(nums)):
for j in range(i+1,len(nums)):
if nums[i]+nums[j]==target:
return [i,j]
1
2
3
4
5
6
7
8
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
# nums_sorted=sorted(nums)
for i in range(len(nums)):
for j in range(len(nums)-1,i,-1):
if nums[i]+nums[j]==target:
c=sorted([i,j])
return c

哈希表

哈希表博文:哈希表

思路及算法

注意到方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引。

使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N) 降低到 O(1)

这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。

先建立一个空字典,查找target-num是不是hashtable的键值,如果是,直接return,如果不是,把这个num-i对以键值对的形式添加入字典。哈希表查找元素的复杂度为O(1)

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from typing import List

class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
hashtable = dict()
for i, num in enumerate(nums):
if target - num in hashtable:
return [hashtable[target - num], i]
hashtable[nums[i]] = i
return []

s=Solution()
# nums=[2,7,11,15]
# target=9
# nums = [3,2,4]
# target = 6
nums = [3,3]
target = 6
a=s.twoSum(nums,target)
print(a)

复杂度分析

时间复杂度:O(N),其中 N是数组中的元素数量。对于每一个元素 x,我们可以 O(1) 地寻找 target - x。

空间复杂度:O(N),其中 N 是数组中的元素数量。主要为哈希表的开销。