motivation
real world SR的降质过程复杂,而且每张图的降质可能都不同:每个相机的PSF都可能不同,同一相机不同的光照条件、场景深度、抖动。
contribution
提出DualSR,只在测试图像的patches上训练(用基于kernelGAN的kernel estimation 估计输入图像patch的分布),是image-specific的
ZSSR+CycleGAN+DualGAN
masked interpolation loss
related works
medical image
Kensuke Umehara, Junko Ota, and Takayuki Ishida. Application of super-resolution convolutional neural network for enhancing image resolution in chest ct. Journal of digital imaging, 31(4):441–450, 2018.
Chenyu You, Guang Li, Yi Zhang, Xiaoliu Zhang, Hongming Shan, Mengzhou Li, Shenghong Ju, Zhen Zhao, Zhuiyang Zhang, Wenxiang Cong, et al. Ct super-resolution gan constrained by the identical, residual, and cycle learning ensemble (gan-circle). IEEE Transactions on Medical Imaging, 39(1):188–203, 2019.
有paired images
blind SR
估image-specific downsampler的:
[2]. Sefi Bell-Kligler, Assaf Shocher, and Michal Irani. Blind super-resolution kernel estimation using an internal-gan. In Advances in Neural Information Processing Systems, pages 284–293, 2019.(kernelGAN, 只用LR测试图像作为训练集来估计image-specific的blur kernel)
[3]. Adrian Bulat, Jing Yang, and Georgios Tzimiropoulos. To learn image super-resolution, use a gan to learn how to do image degradation first. In Proceedings of the European conference on computer vision (ECCV), pages 185–200, 2018.
[11]. Jinjin Gu, Hannan Lu, Wangmeng Zuo, and Chao Dong. Blind super-resolution with iterative kernel correction. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1604–1613, 2019.(IKC, 用了STF(spatial feature transform层来解决多个blurkernel)
[26]. Assaf Shocher, Nadav Cohen, and Michal Irani. Zero-shot super-resolution using deep internal learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3118–3126, 2018. (ZSSR)
[6]. Victor Cornillere, Abdelaziz Djelouah, Wang Yifan, Olga Sorkine-Hornung, and Christopher Schroers. Blind image super resolution with spatially variant degradations. ACM Transactions on Graphics (proceedings of ACM SIGGRAPHASIA), 38(6), 2019(通过分析生成的HR中的artifacts来估计退化过程。训练一个kernel discrimination来预测错误核估计的误差,再通过最小化判别器的error,recover正确的核)
[16]. Shady Abu Hussein, Tom Tirer, and Raja Giryes. Correction filter for single image super-resolution: Robustifying off-the shelf deep super-resolvers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1428–1437, 2020. (其校正滤波器的闭合形式推导(closed-form derivation of their correction filter),以对降级的LR图像进行变换,使其与双三次降采样结果相匹配。在non-isotropic的退化上结果没有report)
non-blind
SRMD[36] 用dimensionality stretching使网络输入degradation的参数(blur kernel,noise level)
USRNet [35]分开解决数据子问题和先验子问题,用MAP
method
architecture
GDN通过下采样输入的LR图像,使之与他自己(LR图像)在patch level上尽可能相似。
patch的internal分布可以由internalGAN在输入图像的patch上训练得到。Ltotal=LGAN+λcycleLcycle+λinterpLinterp
其中LGAN加入了正则项:LGAN=Ey[DDN(GDN(y))−1]2+R
其中R是kernelGAN中估计的kernel的explicit先验。
masked interpolation loss
保持色彩组成,消除输出图像的blurry。
upsampler的训练没有直接的监督,输出图在sharp edge的地方有ringing effects. 特别是在低频区域。引入一个loss 最小化bicubic上采样和输出的结果之差。(bicubic interpolation能正确上采样低频区域,但不能恢复高频细节。)所以如果对整张图加这个loss,效果也是不好的,如上图b。所以需要masked loss。
由sobel算子得到频率mask。
fmask=1−Sobel(Bicubic(x))
这个mask在低频部分值大,高频部分值小。
masked interpolation loss为:
Linterp=Ex||[GUP(x)−Bicubic(x)]∗fmask||_1
experiments
loss权重的影响
synthesized images
DIV2KRK:生成LR:11*11的anisotropic的高斯核,每张图的kernel都有不同的形状和sigma。再下采样,再非均匀的乘性噪声。
urban100:生成LR的方法同上。
NTIRE2017:SISR track2的数据集,用DIV2K的验证集作为HR。降质未知。
比较的方法:
- 第一类:在bicubic下采样上训练的模型。如EDSR+, SAN+, ZSSR(用bicubic下采样)
- 第二类:盲方法- ZSSR/USRNet (kernel由kernelGAN估计出)
- 第三类:有GT 的kernel。(除了在NTIRE2017数据集上没有GT的kernel)
在NTIRE数据集上的结果(2nd比1st类方法好)是符合常理的。kernelGAN+ZSSR在NTIRE数据集上效果不好是因为降质过程较复杂,不能由kernelGAN精确估计出来。而加上masked interpolation loss 后,效果有所提升。
blindSR是假设blur kernel是传统滤波器和anisotropic 高斯核的卷积。
但是kernelGAN+USRNet比不过bicubic类的方法,就不是很能理解。
real images
用的数据集:RealSR数据集(NTIRE2019中所用),由DSLR相机获得。用28mm焦距得到的图像作为LR,50mm焦距得到的图像作为HR。长焦得到的图像有finer的细节。由于很难完全对齐,所以还是没有成pair的图像。(畅师兄的camera lens SR)
kernelGAN或者blindSR都不能准确估计出退化模型。
不足
没有跟cycleGAN,cycle-in-cycle这类方法比较。
future work
- larger scale factors
- harder use-cases with more extreme degradation settings
- applications in medical imaging or electron microscopy.